Research Group Functional Analysis

Publications Wyss



12.

Vorberg, Lukas; Jacob, Birgit; Wyss, Christian
Computing the Quadratic Numerical Range
Journal of Computational and Applied Mathematics :116049
2024

11.

Jacob, Birgit; Glück, Jochen; Meyer, Annika; Wyss, Christian; Zwart, Hans
Stability via closure relations with applications to dissipative and port-Hamiltonian systems
J. Evol. Equ., 24 :Paper No. 62
2024

10.

Frommer, Andreas; Jacob, Birgit; Vorberg, Lukas; Wyss, Christian; Zwaan, Ian
Pseudospectrum enclosures by discretization
Integral Equations OperatorTheory, 93 :Article No 9, 32 p.
2021

9.

Frommer, Andreas; Jacob, Birgit; Kahl, Karsten; Wyss, Christian; Zwaan, Ian
Krylov type methods exploiting the quadratic numerical range
Electron. Trans. Numer. Anal., 53 :541-561
2020

8.

Jacob, Birgit; Möller, Sebastian; Wyss, Christian
Stability radius for infinite-dimensional interconnected systems
Systems Control Lett., 138 :Article ID 104662, 8 p.
2020

7.

Wyss, Christian
Dichotomous Hamiltonians and Riccati equations for systems with unbounded control and observation operators
, Control Theory of Infinite-Dimensional Systems Volume 277 from Oper. Theory Adv. Appl.
Page 158-194
Publisher: Birkhäuser
2020
158-194

6.

Wyss, Christian
Dichotomy, spectral subspaces and unbounded projections
, Operator theory, function spaces, and applications Volume 255 from Oper. Theory Adv. Appl.
Page 221-233
Publisher: Birkhäuser/Springer
2016
221-233

5.

Winklmeier, Monika; Wyss, Christian
On the spectral decomposition of dichotomous and bisectorial operators
Integral Equations Operator Theory, 82 (1) :119-150
2015

4.

Tretter, Christiane; Wyss, Christian
Dichotomous Hamiltonians with unbounded entries and solutions of Riccati equations
J. Evol. Equ., 14 (1) :121-153
2014

3.

Wyss, Christian; Jacob, Birgit; Zwart, Hans
Hamiltonians and Riccati equations for linear systems with unbounded control and observation operators
SIAM J. Control Optim., 50 (3) :1518-1547
2012

2.

Wyss, Christian
Hamiltonians with Riesz bases of generalised eigenvectors and Riccati equations
Indiana Univ. Math. J., 60 (5) :1723-1766
2011

1.

Wyss, Christian
Riesz bases for p-subordinate perturbations of normal operators
J. Funct. Anal., 258 (1) :208-240
2010

More information about #UniWuppertal: